
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 397: 241–251, 2009
doi: 10.3354/meps08154

Published December 17

INTRODUCTION

There are a number of standard methodologies used
to assess community structure from benthic video and
still images. Assessments tend to quantify either num-
bers of individuals or the percentage of seabed cov-
ered by either a particular substrate or species within
an image or video still (Jaap & McField 2001). How this
is carried out varies with methodology. Perhaps the
most commonly used method is the point quadrat

method (Pielou 1974). This method entails overlaying
the image or still with an array of points (number of
points variable; increasing the number of points
increases both accuracy and assessment effort) and
quantifying the number of points intersecting with the
various species and/or substrates within the image.
Another approach is to map all the species and sub-
strates present in an image onto a video or digital over-
lay and determine from this the percentage coverage
of each organism or substrate (Andrew & Mapstone
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1987). Although the assessment effort is much higher
with this second method, accuracy is greatly improved
(Foster et al. 1991, Whorff & Griffing 1992).

Accuracy and efficiency of these methods has been
investigated in a selection of ecosystems, such as trop-
ical coral reefs (Leujak & Ormond 2007). Their useful-
ness in some environments, such as within cold-water
coral ecosystems, has not been rigorously assessed. In
this pilot study, we compare the ability of these 2 meth-
ods to assess some aspects of cold-water coral commu-
nity structure at Tisler Reef, Norway. Additionally
these results are compared with those produced by a
wholly new approach: the use of machine-learning
algorithms in the automated identification and quan-
tification of cold-water coral and sponge coverage
within still images extracted from video footage.

Cold-water coral ecosystems have been found
throughout the world’s oceans (Roberts et al. 2006). In
European waters, they are often associated with cold-
water carbonate mounds, ridges at the edge of the con-
tinental shelf or at other elevated structures such as
banks and sills (White et al. 2005, Dorschel et al. 2007).
Key organisms in these ecosystems are the framework-
building scleractinian corals (Roberts et al. 2006).
These non-zooxanthellate animals form complex 3-
dimensional reef structures as they excrete hard cal-
cium carbonate skeletons during growth (Rogers 1999,
Hovland 2008). As a reef develops over time, this struc-
ture can attain significant height above the surround-
ing seabed (De Mol et al. 2007) despite the slow
growth rates of the corals themselves (Gass & Roberts
2006, Orejas et al. 2008). In Europe, Lophelia pertusa
is the most significant reef-building coral species
(Wheeler et al. 2007), although Madrepora oculata can
also be found performing this role at certain locations,
often in close association with L. pertusa (Mortensen et
al. 2008). The reef structures are characterized by high
biodiversity (Jonsson et al. 2004, Roberts et al. 2008), as
the dead skeletal material of the reef provides a useful
substrate for sessile filter feeders such as sponges
(Henry & Roberts 2007). Furthermore, the increased
flow associated with elevation from the seabed
increases food supply (Thiem et al. 2006, Kiriakoulakis
et al. 2007). Many species of small and juvenile fish use
these reef structures as nursery habitat, as they pro-
vide shelter from predation (Reed 2002). Commercial
fish densities within the reef environment are often
higher than in the surrounding ocean (Husebø et al.
2002, Costello et al. 2005). Although cold-water corals
have been known since the 18th century (Roberts et al.
2003), the extent of seabed covered by these organ-
isms and associated ecosystems, as well as their poten-
tial importance to commercial fisheries, only emerged
in the late 20th century (Costello et al. 2005). Advances
in marine sampling technology indicate that these

ecosystems are relatively common in European waters,
and many reefs have been located in recent years
(Roberts et al. 2005, Wienberg et al. 2008). Unfortu-
nately, these discoveries are rarely of pristine reefs.
The majority show signs of impacts from towed fishing
gears (Fosså et al. 2002). Common indicators of such
impacts are dislodged blocks of live coral, snagged and
abandoned fishing equipment and extended areas of
broken coral fragments amongst trawl tracks. Various
legal attempts to protect a percentage of these reefs
against further damage have been made by a number
of nations (Armstrong & van den Hove 2008) with vari-
able success (Davies et al. 2007).

Monitoring of cold-water coral reefs requires meth-
ods for the spatial assessment of community structure.
This is more challenging than for tropical coral reefs,
with the majority of European cold-water corals found
at depths beyond the reach of SCUBA diving (Wisshak
et al. 2005). Although acoustic methods are improving
rapidly and have increased success in locating areas of
cold-water coral at large scales (Fosså et al. 2005),
analysis of box cores and video or still image data col-
lected by remotely operated vehicle (ROV), submarine
or video sled remains the main approach for resolving
community structure variance across individual reefs
(Henry & Roberts 2007, Mortensen et al. 2008).

Tisler Reef was first documented by ROV in 2002
(Lavaleye et al. 2009). The primary spatial contributors
within the reef community are the coral Lophelia per-
tusa and the sponges Geodia baretti and Mycale lin-
gua. As has been found elsewhere in European waters,
mapping has revealed that large parts of the reef have
been damaged by towed fishing gears (Lundälv & Jon-
sson 2003, Jonsson 2006). In December 2003, trawling
was banned and a video transect established to study
the recovery of the reef. Inevitably, such monitoring
schemes produce large quantities of image data, espe-
cially when repeated over time.

The objective of this pilot study was to quantify the cov-
erage of the seafloor by cold-water corals and sponges on
images taken by ROV at Tisler Reef. The accuracy and
processing time of 3 manual and a new automated
method in estimating coral and sponge coverage was
compared. The ultimate goal was to develop new meth-
ods to expedite the currently lengthy process of manual
image analysis. In the present study the focus was solely
on coral and sponge coverage estimation, with the den-
sities of other fauna and/or reef biodiversity not assessed.

MATERIALS AND METHODS

Study site. Video transect data was collected from
Tisler Reef by ROV (Fig. 1). The reef is located on a sill
in the Norwegian Skagerrak, close to the Swedish bor-
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der (Lundälv 2004). The live proportion covers a region
of approximately 1200 × 200 m over a depth range of 70
to 160 m. Lophelia pertusa is the significant reef-build-
ing coral at the reef.

Video transect data. The video footage was collected
by a Sperre SubFighter 7500 DC ROV in October 2007.
The transect covered a ~100 m traverse of the south-
east corner of Tisler Reef, with the traverse centred at
58° 59.695’ N, 10° 58.240’ E. Depths ranged from 128 to
145 m. The video footage was collected using a verti-
cally downward-facing WAT-231S camera (Watec)
with a Pentax 2.8 mm wide-angle lens from an altitude
of ~2 m. Lighting was provided by 2 downward-facing
200 W hydrargyrum medium-arc iodide lights. The
video signals were transmitted over optical fibre and
recorded onboard on a DVCAM VTR (Sony). The
region covered by the traverse is one that has been
subject to considerable trawl activity in the past, such
that much of the area is made up of small and moder-
ate-sized living coral boulders and fragments sur-
rounded by areas of coral rubble.

For the analysis, one frame every 2 s was extracted
from the video stream giving a total of 1146 analysis
frames from just under 40 min of film. These frames
each covered an area of seabed approximately 2 ×
1.5 m with a resolution of 720 × 576 pixels. Since most

of the extracted frames showed a degree of illumina-
tion vignetting, a border of 30 pixels was removed from
all frames prior to analysis, reducing the analysed
frame size to 690 × 546 pixels. On average, there was a
~70% overlap between successive frames.

Point quadrat method. To determine percent coverage
of an image by the point quadrat method, a grid of points
is placed over each image and the species or substrate
below each point noted (Guinan et al. 2009). The percent
coverage of each species can then be determined. Two
grid resolutions of this method were tested: 15-point and
100-point. A simplified list of classification labels was
used, with each point assigned as falling on: coral–
Lophelia pertusa, sponge–Geodia baretti, sponge–My-
cale lingua or other. A total of 229 analysis frames were
assessed for species percent coverage using a 15-point
grid overlay. This number represents every 5th frame ex-
tracted from the video stream. Forty-five of the analysis
frames were assessed for species percent coverage using
the 100-point grid overlay. This number represents every
25th frame extracted. To avoid observer bias, the 15-
point and 100-point assessments, as well as all other
methodologies compared in this pilot study, were carried
out by the same biological expert.

Map method. Of the manual analysis methods
employed in the present study, the map method was

243

Fig. 1. Location of Tisler Reef and survey transect (black bar). Approximate living reef region is outlined



Mar Ecol Prog Ser 397: 241–251, 2009

the most labour-intensive. For this method, each frame
was subdivided into 89 small boxes, and percent cover-
age of each species and substrate within each of those
boxes estimated (Leujak & Ormond 2007). The total
percent coverage for each target species within these
89 boxes was summed and coverage across the whole
frame determined. This method was applied to 22 of
the analysis frames, every 50th frame extracted.

Auto analysis method. Briefly, this method works by
teaching a computer system to identify areas of interest
(Lophelia pertusa, Geodia baretti or Mycale lingua) by
biological experts labelling a set of training images.
From these training images, machine-learning algo-
rithms determine what image texture features and
colours represent each of these areas of interest. From
this learning process it then attempts to identify such
regions in further images uploaded into the system.
Fig. 2 shows the architecture of the analysis system. All
computation was conducted using a Dell M1530 Intel
Core2 Duo processor laptop running at 2.4 GHz run-
ning Linux. All 1146 extracted frames were analysed
using this method. For the automated detection of
corals and sponges the following steps were applied.

Step 1, single-frame extraction: A single frame
every 2 s was extracted from the video stream using a
standard video-editing tool. These frames were stored
within the BioImage Indexing, Graphical Labelling
and Exploration platform (BIIGLE; Ontrup et al.
2009b). BIIGLE is a rich internet application, which
enables users to browse still images with a standard
web browser. In addition, BIIGLE allows the user to
annotate (label) image regions. A biologist or taxono-
mist can draw a polygon around an object of interest
on the screen and assign the appropriate category
name from a list provided. In the present study, a selec-
tion of images was labelled, with a total of 250 typical
examples of Lophelia pertusa, Geodia baretti and
Mycale lingua. These labels formed a training set
which was used by the system to automatically detect
corals and sponges in images extracted from the same
video transect, as discussed in the following steps.

Step 2, computation of numerical features: Under-
water video footage is often characterised by variable
illumination. It is therefore not always possible to rely
on simple image features such as brightness or colour
to automatically detect corals and sponges. Addition-
ally, specific shapes or outlines cannot be used because
of the variability in growth forms of corals and
sponges. As an alternative, a measure was computed
based on a small local scale: texture. The computation
of numerical texture features is a common topic in
image processing literature (for an overview see
Mirmehdi et al. 2008). In the present study, 15 differ-
ently orientated and spaced gratings were used to pro-
duce a set of 30-dimensional texture features for each

frame of video. These numerically represent the differ-
ent optical attributes of corals and sponges with
respect to their surface structure. For a detailed
description of the approach see Ontrup et al. (2004).

Step 3, machine learning: The numerical data (30-
dimensional texture features) obtained in the previous
step were then fed into the machine-learning compo-
nent of the auto analysis system. This machine-learn-
ing component consists of an artificial neural network
and is based on the principle of the so-called self-orga-
nizing feature map (SOM) (Kohonen 2001). Generally
speaking, a SOM learns to map data similarities from a
high-dimensional input space to a lower dimensional
map space. In our case, the system learns to map simi-
lar texture features to neighbouring regions on a 2-
dimensional disk space. The algorithm employed
within BIIGLE was an extension to the standard SOM
termed the hierarchically growing hyperbolic self
organizing map (H2SOM) (Ontrup & Ritter 2006, Mar-
tin et al. 2008, Ontrup et al. 2009a). After training the
neural network with the numerical feature vectors, the
map partitions the data into hierarchically organized
clusters so that image regions with similar optical tex-
ture appearances are mapped to the same or neigh-
bouring clusters on the map (shown on the coloured
disc in Fig. 2). By mapping the colour of the embedding
disk space onto the original still image, a result as
shown in Fig. 3 is obtained for each image analysed.
This figure shows how the artificial neural network
‘sees’ the different image regions of the corresponding
video still frame.

Step 4, application of expert labels: The previous
step outlined how the artificial neural network orga-
nizes the numerical feature data. However, to obtain a
coverage estimate for each organism for each image, a
further step is required: attachment of a 2-dimensional
vector to each node of the network. The first compo-
nent counts how many image patches the node con-
tains which have been labelled as Lophelia pertusa.
The second component counts the number of labels for
either of the sponges Mycale lingua or Geodia baretti.
Therefore, each node of the H2SOM carries a label,
which is directly taken from the expert labels of the
training set (Step 1). Note that the network produced
in Step 3 is built in an unsupervised fashion. This
means that the training process itself does not depend
on human labels. The system organizes all video
frames and uses the training set frames to ‘learn’ from
the human. By mapping the range of the 2-dimen-
sional label vectors to the red and green channels of an
RGB image, a coloured categorised image is obtained
(Fig. 3). The red areas of the image are those recog-
nised by the system as being covered by coral, and the
green areas those covered by sponges. In the present
study, to determine the percent coverage estimates for
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these organisms within each frame, the number of red
and green pixels within each of these colour coded
classification frames was computed. By dividing these
pixel counts by the total number of pixels in each
frame, percent cover was determined. These percent
coverage results from each frame were written to a
database for further evaluation. Additionally, these
colour-categorised images were assembled into a cate-
gorised video, which was played alongside the raw
transect video footage. Running these categorised
videos alongside the raw video enabled a rapid assess-
ment of how well the auto analysis system deals with

artifacts such as variable illumination and heave. The
raw video and categorised video produced in the pre-
sent study are available for viewing as online supple-
mentary material at: www.int-res.com/articles/suppl/
m397p241_app/.

Determination of assessment effort. Since all the
methods used in the present study utilised the same
video data, the sampling effort for each was the same.
However, the analysis time varied greatly with
method. The time spent on each stage of analysis was
measured and an average time expenditure per frame
determined.
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Fig. 2. Architecture of the auto analysis system. The wide arrows indicate the processing path corresponding to the 4 steps as 
described in the ‘Materials and methods’. The central part of the figure shows the artificial neural network visualised as the 

coloured disk. This separates the video data into hierarchically organized clusters shown as small circles on the map space

Fig. 3. Sequence of result images from the auto analysis processing pipeline. (a) The original video frame. (b) The cluster colours
the neural network has learned from the texture data. Note that this image is generated without any expert labels (unsupervised
training process only). For preparation of (c), expert labels were applied to the neural network. Depending on the number of coral
or sponge labels within the clusters on the map, regions of the image are coloured red or green, respectively. (d) The final 

categorised frame from which the coverage estimations are produced by counting the coloured pixels

http://www.int-res.com/articles/suppl/m397p241_app/
http://www.int-res.com/articles/suppl/m397p241_app/
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Data analysis. The percent cover estimations obtained
by each of the various methods can be regarded as a
time-series where, for each video frame (point in time), a
measurement (coverage estimation for each fauna type)
is taken. To assess the quality of the auto analysis
method, a statistical measure to compare its results with
the results produced by the human expert using the
other tested methodologies was required. A common
way to achieve such a comparison is by means of a cross-
correlation analysis (Box & Jenkins 1994). Such a cross-
correlation measures the degree of correlation between
2 time-series with respect to their time lag, i.e. how the
first series correlates to the second if the measurements
are compared at time points taken x samples apart,
where x is the time lag. In this case, the largest correla-
tion between 2 methods at a time lag of zero would be
expected if the 2 sets of results correlate well — a cross-
correlation score of 1 indicates perfect correlation. Addi-
tionally, 99% confidence intervals were determined for
the cross-correlation scores. Where the 99% confidence
interval was found to be lower than the
cross-correlation score, the null-hypothesis
that the 2 data sets were not correlated
could be rejected with high confidence.
Aside from identifying broad statistical dif-
ferences in the success of the various
methodologies in quantifying Lophelia
pertusa and sponge coverage across the
transect as a whole, methodologies were
compared on a frame-by-frame basis (bar
charts show percent coverage estimations
by method for each frame analysed).

RESULTS

Lophelia pertusa coverage estimations

Cross correlation between all method-
ologies and the map method showed sig-
nificant positive correlations (Table 1).
Auto analysis/map had a correlation coeffi-
cient only 0.075 lower than the 15-point/
map correlation coefficient, indicating that
Lophelia pertusa coverage estimations
made by the auto analysis and 15-point
methods correlate similarly with changes
in map estimations. The more labour-
intensive 100-point method had the
strongest positive correlation with the map
method, with a coefficient of 0.981. Both
the auto analysis and 15-point methods
produced enough data to plot a continuous
time-series for the distribution of L. pertusa
across the whole transect. Figs. 4 & 5 show
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Test No. Cross- 99%
frames correlation confidence

interval

Lophelia pertusa
identification

Auto analysis/15-point 229 0.791 0.172
Auto analysis/100-point 45 0.794 0.382
Auto analysis/Map 22 0.869 0.571
15-point/100-point 45 0.862 0.394
15-point/Map 22 0.944 0.543
100-point/Map 22 0.981 0.552
Sponge identification
Auto analysis/15-point 229 0.482 0.130
Auto analysis/100-point 44 0.531 0.292
Auto analysis/Map 22 0.520 0.548
15-point/100-point 44 0.794 0.293
15-point/Map 22 0.867 0.551
100-point/Map 22 0.971 0.547

Table 1. Results of cross-correlation comparisons between the
various tested methodologies in identification of Lophelia
pertusa and the sponges Geodia baretti and Mycale lingua

Fig. 4. Lophelia pertusa. Comparison between L. pertusa percent coverage es-
timates from transect data produced by the auto analysis and 15-point methods

Fig. 5. Lophelia pertusa. Comparison of different methods for the determi-
nation of L. pertusa percent coverage
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the distributions of L. pertusa across the
transect given by the various method-
ologies. The rapid 15-point assessment
method and auto analysis method were
comparable in identifying regions of L.
pertusa, but the percent coverage esti-
mations made by auto analysis was
generally a few percent lower than
those made by the 15-point method
(Fig. 4). There were several maxima in
the 15-point method data which were
not picked up by auto analysis, particu-
larly in the area between Frames 350
and 525. An example of such an under-
estimation by the auto analysis method
is shown in Fig. 6, which shows that the system has not
identified some areas of L. pertusa toward the top and
left of Frame 406.  There was strong similarity between
the 100-point and the map method estimations, as
would be expected from the strong correlation coeffi-
cient (Fig. 5, Table 1). Additionally, there was reason-
able similarity between estimations produced by the
15-point and map methods; however, the 15-point
method is not suited to detecting coral presence in
images of regions where coral coverage is low (~<5%
Fig. 5). Auto analysis, however, appears to locate small,
isolated coral fragments in such images more success-
fully than the 15-point method (Frames 575 to 700,
Fig. 5). The auto analysis/map comparison indicated
only one small overestimation of L. pertusa by the auto
analysis system (Frame 756, Fig. 7). Here the system
had mistaken a sponge (Geodia baretti) covered with
small sediment-filled pockets or holes for L. pertusa.
Comparisons between the auto analysis and 100-point
methods (Fig. 5) show similar coverage estimations for
the majority of the transect, with 2 small overestima-
tions by the auto analysis method between Frames 600
and 800 and a few underestimations of between 5 and
20% at various points of the transect.

Sponge coverage estimations

Strong positive correlations between the map
method and both the 15-point and 100-point methods
were found (Fig. 8). The strengths of correlations for
each method match almost exactly those produced by
each comparable correlation in Lophelia pertusa per-
cent cover estimation. Although still positive, the auto
analysis/map correlation coefficient was statistically
weaker, at 0.504.

Estimation of sponge coverage across the transect
varied significantly with methodology. The 15-point
method produced numerous sponge density peaks that
were more muted or completely absent from the auto

analysis results (Fig. 9). Throughout the whole tran-
sect, the auto analysis method estimated a sponge cov-
erage of ~0.5 to 2.5% in most frames, although this low
‘background’ sponge coverage estimation was com-
pletely absent from the 15-point results.

Fig. 8 shows for comparison the sponge coverage
estimations produced by the various methodologies
across the transect. There was generally a poor corre-
lation between both the auto analysis and 15-point
methods with the map method in estimating sponge
coverage. The  100-point method correlated reason-
ably well with the map method.

Assessment effort

Table 2 shows a breakdown of the time required by
each method for coral and sponge coverage analysis.
For the auto analysis method, the time taken to process
each image inclusive and exclusive of the time taken
for the biological expert to enter labels identifying
coral and sponge areas onto the training frames within
the BIIGLE system was also shown. The rationale
behind this is to show that once this manual, labour-
intensive task is done, the computing time to produce
the auto analysis result for each frame is minimal. In
the ~17 h spent analyzing 22 frames with the map
method, the auto analysis method analysed ~50 times
this number, i.e. 1146 frames.

DISCUSSION

Auto analysis approach: strengths and weaknesses 

The automated system allows a much greater volume
of image data to be assessed in a particular timeframe
than would be possible with any of the other method-
ologies discussed in the present study. Although the
time taken to set up the auto analysis system is greater
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Stage 15-point 100-point Map Auto analysis

Auto analysis
Expert labelling (Step 1) 10 h
Pre-processing (Step 2) 5 h 36 min
Training (Step 3) 1 h 6 min
Application (Step 4) 21 min
Analysis time per image 3 min 15 min 45 min 22 s
(incl. expert labelling) (54 s)
No. images analysed 229 45 22 1146

Total time 11 h 27 min 11 h 15 min 16 h 30 min 7 h 3 min
(incl. expert labelling) (17 h 3 min)

Table 2. Mean time spent analysing each video frame with the different 
methodologies
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(Table 2), once the setup is completed, a large number
of frames can be processed rapidly without manual in-
tervention. This is a significant strength of the system.
With current marine imaging techniques, large quanti-
ties of images can be rapidly collected, but visual analy-
sis — even by the 15-point method — becomes a time-
consuming and labour-intensive task.

The auto analysis approach produced Lophelia per-
tusa coverage estimates very similar to those produced
by the 15-point method, and in images containing
sparse coral coverage consisting of a few isolated frag-
ments (such as can be found across areas of Tisler
Reef), the auto analysis method outperformed the 15-

point method. The unsuitability of the point method in
identifying small, rare features has been previously
observed, particularly when a low number of grid
points is used (Dethier et al. 1993).

Although the auto analysis method appears to be a
more suitable method to detect small patches of live
coral amongst coral rubble than the 15-point method, it
does appear to underestimate coral coverage slightly
in regions where coral is abundant. An example of
such an underestimation is shown in Fig. 6, where the
auto analysis appears to underestimate coral coverage
in regions where coral is abundant, particularly where
lighting intensity is variable. There are 2 ways such
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Fig. 6. Lophelia pertusa. Frame 406. (a) Raw video frame and (b) auto analysis of L. pertusa regions (red). The more distant L. per-
tusa seen at the top and to the extreme left side in (a) are not identified as L. pertusa by the system. The distant sponges are 

likewise missed

Fig. 7. Lophelia pertusa. Frame 756. (a) Raw video frame and (b) auto analysis of L. pertusa regions (red). The system has identi-
fied a region of L. pertusa in the foreground correctly, but it has mistakenly identified parts of a couple of ‘dirty’ Geodia 

baretti sponges also as being L. pertusa
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illumination problems could be addressed in future
analyses. (1) The images labelled by experts in Step 1
of the auto analysis procedure could be modified.
Additional label categories (e.g. L. pertusa–strong
illumination, L. pertusa–poor illumination) could be
used by the labelling experts. After auto analysis,
these 2 categories could be summed to produce the
total estimated L. pertusa coverage for each frame.
This approach may have a limited success in the
improvement of coverage estimations. The low light
levels in the poorly illuminated frame regions, how-
ever, remove many of the texture features from the
image required by the system (and to an extent by the
human eye) to differentiate successfully between the
2 sponge species and L. pertusa. (2) Scan through
the frames imported into the auto analysis system in
advance of processing, and remove frames where
there is seen to be considerable variation in illumina-
tion. This second option would increase the required

processing time. Overestimations in L. per-
tusa coverage were not a common problem
with the auto analysis method, but for the
few frames where overestimations did
occur, they could be attributable to either
the extreme illumination of coral rubble
associated with the ROV passing in very
close proximity to the seabed or the
misidentification of sponge regions as L.
pertusa. The first source of error can be
guarded against by viewing the raw data
video alongside the auto analysis cate-
gorised video and marking down frames of
concern. The misidentification of sponge
regions could be addressed by increasing
the range of sponge morphologies repre-
sented in the training set produced during
Step 1 of the auto analysis process.

The auto analysis method had limited
success in sponge coverage quantification.
The great variation in texture and coloura-
tion of sponges from Tisler Reef may have
affected the ability of the system to accu-
rately quantify coverage. The present
study also shows the 15-point method to be
of little use in accurately assessing sponge
coverage of the seabed in the Tisler Reef
area. An increased number of labelled
sponges in the training set (Step 1) may
have helped the auto analysis system iden-
tify more sponges in the images and
reduce misidentification of regions of the
seabed as sponge (background sponge
coverage estimate of ~0.5 to 2.5%, Fig. 9).

In the present study, we did not look at
the applicability of the auto analysis sys-

tem for distinguishing substrate type or species other
than Lophelia pertusa, Geodia baretti and Mycale lin-
gua. The auto analysis system can be trained to iden-
tify substrates or further species if a sufficient number
of training labels are provided by experts. Initial auto
analysis trials using earlier algorithms for the enumer-
ation of soft-sediment biota from the deep-sea long-
term observatory HAUSGARTEN indicate an identifi-
cation accuracy of 86 and 75% for sea cucumbers
(Elpididae) and starfish Bathybiaster vexillifer, respec-
tively (Ontrup et al. 2009a).

Applicability for reef-mapping

A great advantage of the auto analysis method is
the production of the categorised frames for each
image imported into the system (Figs. 6 & 7). Each of
these categorised frames can be regarded as a small-
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Fig. 9. Geodia baretti and Mycale lingua. Comparison between sponge per-
cent coverage estimates from transect data produced by the auto analysis 

and 15-point methods

Fig. 8. Geodia baretti and Mycale lingua. Comparison of different methods 
for the determination of sponge percent coverage
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scale coral and sponge distribution map. Provided the
initial video is collected with accurate positioning
data, these images can readily be imported into stan-
dard GIS software and used as overlays of video
mosaic maps produced from the raw frames. A fur-
ther option would be to import the auto analysis cate-
gorised frames into GIS bathymetry maps. This
potential application is not offered by any of the other
methods tested here except for the time-consuming
map method.

Applicability for management and monitoring

Monitoring the success of fishery closures of cold-
water coral areas can be costly in both time and
finances (Morgan et al. 2005). European states fit reg-
istered fishing vessels with vessel monitoring systems
(VMS), which regularly declare their position via satel-
lite (Deng et al. 2005). The activities of vessels not fit-
ted with VMS are harder to ascertain, particularly off-
shore. Further damage following closures can only be
assessed satisfactorily by visual inspection of the reefs,
and by comparing these inspections with those made
previously. The auto analysis method presented in the
present study could potentially be used to record and
quantify Lophelia pertusa coverage along selected
transects at protected reefs and/or those at risk.
Depending on local conditions, the auto analysis sys-
tem may not require re-training between ROV sur-
veys. The high success rate of the system at identifying
the small, live fragments of L. pertusa amongst coral
rubble could be a particularly useful feature for sur-
veys of damaged and at risk reefs such as Tisler Reef,
with such fragments being possible indicators of trawl
activity (Hall-Spencer et al. 2002, Reed et al. 2007).
The distribution and percent coverage of these living
fragments in the coral rubble area surrounding the liv-
ing Tisler Reef edge could be readily monitored over
time with this auto analysis system. Any local increase
in percent coverage by such fragments or large-scale
rearrangements of fragments between surveys could
be indicative of ongoing fishing activity.
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